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i square-iaw force 6eid and is subject to a constant & usi diciiki iriotion, yidds rather surprisizg resu!ts. In See. IV, 
normal to the instantaneous plane of its motion is con- 
sidered. The assumption is made that the mass change 
of the satellite is negligible. In Sec. I1 the equations of 
motion and the mathematical framework are developed. 
The analysis in Sec. 111, in which an exact closed-form 

the Kryloff-Bogoliuboff averaging process (Ref. 1) is 
applied to the case of elliptical orbits in order to obtain 
another closed-form solution; in Sec. V an approximate 
closed-form solution is given for the case of elliptical 
orbits of small eccentricity. 
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ABSTRACT 

The motion of a satellite in a central inverse-square-law force field, 
subject to a constant thrust normal to the instantaneous plane of motion, 
is considered. An exact closed-form solution is given for the case of 
initially circular orbits, and approximate closed-form solutions are 
found for initially elliptical orbits, using the methods of Kryloff and 
Bogoliuboff, and Poincark. 

I 

I. INTRODUCTION I 
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II. EQUATIONS OF MOTION 

In Fig. 1 the rectangular coordinate system OXYZ is 
an inertial frame of reference, where 0 is the origin of an 
inverse-square-law force field acting on the satellite. The 
Oxyz rectangular coordinate system is chosen so that the 
satellite is always on the positive x-axis at a distance T 

from the origin, with the z-axis in the direction of the 
angular momentum of the satellite. Under these circum- 
stances the instantaneous velocity vector of the satellite 
lies in the x-y plane. The angular velocity of the Oxy2 
frame of reference relative to the inertial frame OXYZ 
will be designated by o = 0,i + Uyj + W , k ,  with i, j, k 
unit vectors along the positive x,  y, and z axes, respec- 
tively. The plane defined by the instantaneous position 
and velocity vectors of the satellite is referred to as the 
instantaneous plane of the motion. The thrust per unit 
mass on the satellite will be given by W = Wk, where W 
is a constant. 

Using the dot notation to denote time derivatives, the 
equation of motion is 

.. 
r = - $ r  + Wk 

From r = ri and di/dt = o X i, it follows that 

. .  
v = r = ri + m,j - ra,k (2) 

i 

Fig. 1. Frames of reference associated with the satellite 

2 

Since v lies in the x-y plane, of necessity 

oy = 0 

and Eq. (2) becomes 

v = i = ;i + r0,j 

A further differentiation yields 

(3)  

(4) 

From Eq. (1) and (5) we obtain 

d 
dt 
- (Y2Wz) = 0 

YO,W, = W 

From Eq. (6) it follows that the magnitude of the 
z-component of the angular momentum, given by h = r20z, 
remains constant. From di/dt = o X i, etc., we can write 
Eq. (6) in the form 

d' h rW 
dt 

dk rW 

A =  - - i + - k  
r 2  h 

-=-hj dt 

The unknowns are i, j, k, and r.  Once r and i are deter- 
mined, the motion is completely specified. It is interesting 
to note that the vector equations of Eq. (7) are func- 
tionally the Frenet-Serret formulas of differential geom- 
etry (Ref. 2). 

If we define e by the equation r2e' = h and let u = l/r, 
Eq. (7) can be simplified to 
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I 

The solution to the first equation of the set of Eq. (8) is 

(9 )  u = - 1 Y  = [ I  + e cos (e - +)] I 
Y 1 

with e and 4 constants of integration determined from 
initial conditions. Since 0 is determined only up to an 

additive constant, there is no loss in generality in assum- 
ing + = O ,  which we henceforth do. In the r-8 plane, 
Eq. (9) represents a conic section of eccentricity e which 
is independent of 

For the special 

the normal thrust W. 

case in which W=O, we obtain 

i = i,cosB + j,sinB 

j = - j, sin 0 + j, cos e 
k = k, 

(10) 

where io, j,, and k, are initial vectors at e = 0. It is 
apparent that the orbital plane is fixed in inertial space 
(k = k,) and that the satellite traverses a conic section 
(one-body problem). 

111. CIRCULAR ORBITS 

For the following specific set of initial conditions (at 
t = 0): 

r = a  

r = O  

"($ 
the motion in the r-e plane will be circular, with r = a = 
h'/p = constant. The solutions to Eq. (7) in this case are 

i = A + Bcosvt + Csinvt 

j = L. [ - Bsin vt + Ccos vt] 
(11) 

a 

1 k = - [aZA - WB cos vt - p2C sin vt] 
ffP 

where 

p = -  a W  
h (12) 

1 
V 2  

B = - [ a2i, - a/3ko] 

and io, j,, and k, are determined from the initial position 
and velocity of the satellite. (Not to be confused with 
io, J,, and k, of Sec. 11.) . .  

From Eq. (12) it follows that A, B, and C are mutually 
perpendicular. The position of the satellite at any time 
t is given by r = ai, so that the satellite moves in a fixed 
plane normal to A. 

From 

it follows that the motion is circular with center at aA, 
of radius 

(14) 
a a2 

a , = a - = a  < a  
(wz+U?\Ix 
\ a4 1 

and frequency 

v = -($ 4 > (-$ (15) 

I 
3 
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If the motion is initially in the X-Y plane, then the 
plane of the motion is at a distance 

from the origin, and it is inclined at an angle 

W L  
az 

cos-' 
P2 

W2+- 
a4 

to the X-Y plane. 

At any time t ,  the height of the satellite above the X-Y 
plane is given by 

and the maximum height occurs at v t  = with 

W-Lk 
(18)  

ffP a2 H,,, = 2a- = 2a 
V 2  w2 + CL' 

a4 

The absolute maximum height from the X-Y plane is 
achieved when W = p/az, in which case the height is 
H = a, the plane of the motion is inclined to the X-Y 
plane at an angle of 45 deg, and the time to achieve this 
height is 

IV. ELLIPTICAL ORBITS 

If the initial motion is elliptical, 0 < e < 1, and if the with 
quantity 

a2 

(17)  
ffP H = r - k o = a i - k o = a - ( l  V 2  -c0svt) 

is sufficiently small, the method of Kryloff-Bogoliuboff 
(Ref. 1) is applicable. Upon differentiating, Eq. (8) 
becomes 

K k  
d2i deP + i = - 

(1 + ecos 0 ) s  

K di 
(1  + e cos e)3  dB 

- - dk 
dB 
- - _  

We assume a solution in the form 

4 

-- dC - Kh (A, B, C, D) 
dB 

Moreover, the vectors a,, b,, c,, d,, r = 2, 3, 4, * * * , are 
assumed to be slowly varying, so that da,/dO = ufr, etc. 
Neglecting K2 terms, it follows from Eq. (20) and (21) that 

-- di  - -Asine+Bcose+KfCose  

m 
dB 

(19)  

+ K g  sin 6 - K r (a, sin rt9 - b, cos re) 
2 

d2i - - A c O s B - B s i n ~ - 2 ~ f s i n 8 + 2 K g C O s ~  d? - 
m 

- K r2 (a, cos re + b, sin re) 
2 

m 

- K h  - K Y (c, sin rfl - d, cos re) 
dk 
d0 
-- 

1 
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Substituting in Eq. (19) yields 

m 
KD - 2 ~ f  Sin e + ~ K ~ C O S  6 + K Z  (1 - r2) (a,cosr8 - b,sinr6) 

2 

m 

1 
Kh - KZr(c,sinrB - d,cosrB) 

with 
P2l 

(23) 

The a,, r = 0, 1, 2, * , are the Fourier coefficients of 
(1 + ecos e)-3, and h is the steady-state component of 
(A sin 8 - B cos O ) / ( l  + e cos e)3. 

From Eq. (23) it follows that 

so that 

whose solutions are 

A = A, 

B =Bocos' 0 + C,sin'e 

C = - Bo s i n 1  0 + C, c o s 3  0 

(27) 
K a  K a  

2 2 

K a  

2 2 

with A,, Bo, and C, constant vectors of integration. 

The values of A, B, C, D, a,, and b,, as given by Eq. 
(25) and (27), determine the vector i, and the motion is 
given by r = ri, with 

h2 
tr 

1 + ecosB 

- 
r =  

If e is set equal to zero, then the value for i reduces to 
the exact solution for the case of circular motion. This 
can be noted by comparing i with that i in Eq. (ll), after 
replacing t by e, a by 1, and p by K.  

5 
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V. ORBITS OF SMALL ECCENTRICITY 

For e < < 1 we can replace w3 by the expression 

h6 
P 3  

u - ~  = - (1 - 3e cos e )  

and Eq. (8) becomes 

- = j  di 
dB 

= - i + K (1 - 3e cos e )  k 

- - ~ ( 1  - 3ecosO)j 

dB 
dk 
d6' 
- _  

where, neglecting e2 terms, 

An integration of Eq. (32) yields 

1 + c [  w - 1  O + l  
cos - 1) e cos (w + 1) e - 

(33) 

with similar expressions for j and k. For K = 0,o = 1, the 
expression for i reduces to 

i = B sin 0 + Ccos 0 (34) 

The solutions of Eq. (29) for e = 0 are 
which is the solution of Eq. (29) with K = 0. 

i, = KA + B sin 0 0  + C cos 

jl = w B  cos ,OB - WC sin 0 0  ( 30) With i = io, j = io, and k = k, for 6' = 0, we obtain 
k, = A - KBSifloe - KCCOSwe 

1 
0 2  0 2  

where 0' = 1 + K ~ ,  and A, B, and C are arbitrary con- 
stant vectors. 

A = -5 io + -ko 

B='' 
Jo Next, we assume a solution of Eq. (29) of the form w (35) 

i = i, + ei, 

j = j, + ej, 
k = k, + ek, 

(31) 

and the motion of the satellite is given by 

Substituting the terms of Eq. (30) and (31) into Eq. (29), 
and neglecting e2 terms, we obtain r = ri ( 36) 

di, - . 
dB ' 2  

A', - 

- _  
where i given by Eq. (33) and r = h 2 / p  (1 - e cos e) = 
a (1 - e cos e), neglecting e' terms in r and in the prod- 
uct ri.  The motion is, of course, quite complicated since 

1 - - i, + Kk2 - 3K cos e [A - K~ sin ,,,e - Kc cos dB 
four fundamental frequencies occur: v = 1, w, 0 - 1, and 

(32) 0 -t 1. 
-- dk2 - - Kj2 + 30K cos e [B cos we - c sin ,e] 
dB 

6 
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NOMENCLATURE 

0 
Y 

T 

radius of circular orbit with W = 0 
radius of circular orbit with W # 0 
constants of integration, defined by Eq. (12) 
distance of orbital plane from origin 
eccentricity 
z-component of angular momentum 
height of satellite above X-Y plane 
unit vectors along positive x7 y, and x axes 
initial position vectors (in Sec. I1 at 0 = 0; 
subsequently, at t = 0) 
origin of inverse-square-law force field 
distance of satellite from origin 
time to achieve the absolute maximum height 
from the X-Y plane 

l l r  
velocity of satellite 
thrust per unit mass on satellite 
rotating coordinate frame of reference 
inertial frame of reference 
parameters of the motion, defined by Eq. (12) 
defined by r20 = h 
parameter of the motion 
proportionality constant of the inverse- 
square-law force field 
parameter of the motion, defined by Eq. (12) 
phase angle 
angular velocity 
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